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Abstract

A 3-d spectral element method is presented for Durran’s pseudo-incompressible model
for atmospheric flows. The model is valid in deeply stratified flows and conserves a
form of energy close to that which the fully compressible system conserves. Durran’s
method allows for longer time-steps than the fully compressible model. The spectral
element method provides high computational accuracy. The solver supports parallel
execution in supercomputers or clusters of computers through domain decomposition.

Solutions are presented for three physical cases: A differentially heated cavity bench-
mark case, the St. Andrew’s Cross formed by internal gravity waves in a continuously
stratified fluid, and the breaking of internal gravity waves in two and three dimen-
sions. The behaviour of the computed solutions agree well with cited literature in both
linear and non-linear cases.
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Chapter 1

Introduction

In this thesis, a partial differential equation solver is developed, mainly to study grav-
ity waves in the atmosphere. Internal gravity waves can arise for instance from winds
passing over mountain ranges, called mountain- or lee waves. The study of such waves
is important in order to understand the middle atmospheric winds.

To simulate these phenomena, we need to choose an appropriate set of governing
equations (a mathematical model), and develop a solution algorithm for this chosen
set of equations. The first chapter of this thesis quickly presents the most relevant
model equations before it goes on to explain the basics of the chosen numerical so-
lution framework. Chapter two explains the treatment of the mathematical model in
more detail. Chapter three shows how the discretisation of the equations leads to sys-
tems of linear equations and explicit integration problems and how to solve these. The
fourth chapter explains how the numerical model is implemented as a parallel com-
puter program. Chapter five contains the results of a few simulations, while chapter
six has some concluding remarks.

1.1 Models for Atmospheric Flows

Various models exist for the purpose of investigating atmospheric phenomena. Their
complexity and application vary. A too simple model will fail to accurately represent
the physics of interest in many cases. With a too complex model, it might not be feasible
to compute the desired information at all, or the programming effort might not be
worth the extra accuracy.

The main goal of this thesis has been to be able to produce accurate numerical
results on the behaviour of internal gravity waves in deeply stratified, i.e. very tall
atmospheres. In one of the cases presented in chapter five, the density decreases by
three orders of magnitude from the bottom to the top of the simulation domain. Such
very tall atmospheres require specialised mathematical models.

We will try to solve for the pressure p, temperature T, density ρ and the three veloc-

ity components ~u = u~i + v~j + w~k of the fluid. The ’Perfect Gas Law’ gives an analytical
relation

p = ρRT

1



that eliminates one of the state variables. R is the specific gas constant, which is around
287 J/(kg K) for air. We only need to find five other equations to solve for the remaining
quantities. The pressure and temperature state variables have been replaced by the
Exner function

π =

(

p

p0

)R/cp

and the potential temperature

θ =
T

π

in some of the models mentioned below. Here, p0 represents a constant reference pres-
sure and cp is the specific heat of the fluid at constant pressure. The potential tempera-
ture is a convenient quantity, since convective instabilities are easy to spot when using
it. If the vertical gradient of the potential temperature is negative (dθ/dz < 0), then
that region is unstable.

1.1.1 The Fully Compressible Model

Omitting Coriolis and viscous terms, the fully compressible governing equations for a
perfect gas are

ρ
D~u

Dt
= −∇p + ρ~g

ρcv
DT

Dt
= −∇ ·~q− p(∇ · u) (1.1)

1

ρ

Dρ

Dt
+∇ · ~u = 0,

where
D

Dt
=

∂
∂t

+ ~u · ∇

is the substantive derivative. It is common to make some assumptions to further sim-
plify the thermal energy equation (1.1) and still name the model fully compressible.
For instance, the heat flux~q is often assumed to obey Fourier’s law (~q = −k∇T).

The fully compressible model can describe all the physical phenomena that we are
interested in. The challenge, however, is to accurately solve these equations. The
model supports sound waves, which are small fluctuations in density that move with
a much higher speed than the other flow structures typically do. Because of the high
speeds, it is necessary to have a very small time-step if this model is to be solved nu-
merically. Nance and Durran [1], in their comparison between the anelastic and fully
compressible models, have quoted time steps of size ∆t = 0.25s for the fully compress-
ible model and ∆t = 10s for the anelastic models in some cases. It seems that there is a
substantial computational penalty associated with the fully compressible model. Since
sound wave propagation is not of any interest, we choose not to use the fully com-
pressible model.
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1.1.2 The Boussinesq Approximation

It is acceptable to neglect the density variations in the governing equations under cer-
tain circumstances. The resulting model is justified if the Mach number of the flow is
lower than 0.3, the propagation of sound waves is of no interest, the vertical stratifi-
cation is sufficiently small (≪ 10km in the Earth’s atmosphere) and the temperature
differences in the fluid are small [2].

Let us decompose the density ρ = ρ0 + ρ′, where ρ0 is the constant density in a
hydrostatic equilibrium state with p = p0(z) and ∇p0 = ρ0~g. If we neglect the effect
of density variations everywhere except in the buoyancy term, we get the Boussinesq
momentum equation

∂~u
∂t

+~u · ∇~u +
1

ρ0
∇p =

ρ′

ρ0
~g + ν∇2(~u).

If we were to ignore the density variations also in the buoyancy term, there would be
no buoyant motion at all. That would mean that a blob of fluid with a higher density
than its surroundings would not sink!

The properties of the fluid such as kinematic viscosity ν and thermal diffusivity κ

are considered to be constant. For a perfect gas satisfying Fourier’s law of heat con-
duction, we get the thermal energy equation

∂T

∂t
+ ~u · ∇T = κ∇2(T).

By assuming a constant density in the continuity equation we get the incompressible
form

∇ · ~u = 0.

We will not use the Boussinesq approximation, other than for comparison purposes,
since we are interested in atmospheres much taller than the Boussinesq model can
handle.

1.1.3 The Anelastic Models

There are several systems of governing equations in the anelastic category. They all
share the form of the anelastic continuity equation

∇ · (ρ̄~u) = 0, (1.2)

which was first discussed by Batchelor [3]. However, the definition of the background
density profile ρ̄ is different for the various models. The anelastic heat equation

Dθ

Dt
=
H

cp
,

where H is the heating per unit volume, is also similar for the anelastic models dis-
cussed here. In the following discussion of the models, viscous effects are omitted. A

3



viscous friction term may be inserted in the momentum equations, with the appropri-
ate stratified viscosity for each model.

The anelastic models are stated using the potential temperature and the Exner func-
tion instead of the basic temperature and pressure quantities. The state variables have
also been decomposed into a reference background denoted with a bar, and a pertur-
bation denoted primed, i.e ρ = ρ̄ + ρ′. The background quantities are either constant
or vertically varying, and must sometimes also satisfy additional constraints.

Ogura and Phillips [4] derived their anelastic system through a scale analysis and
ended up with the following momentum equation:

D~u

Dt
+ cpΘ∇π ′ =

~gθ′

Θ
.

Here, Θ is a constant potential temperature in an isentropic, i.e. adiabatic and friction-
less, reference state. An adiabatic process takes place without any heat change.

One of the assumptions that Ogura and Phillips made was that the deviations from
the constant background potential temperature Θ are small. Again this is an unaccept-
able assumption, since the potential temperature will deviate by as much as an order
of magnitude between the top and bottom of our simulation domain.

Wilhelmson and Ogura [5] developed another model by assuming a vertically vary-
ing background potential temperature θ̄(z). Their momentum equation is

D~u

Dt
+ cpθ̄∇π ′ =

~gθ′

θ̄
.

This model does not preserve the energy of finite-amplitude disturbances.
Lipps and Hemler [6] were able to produce a system that conserves energy in the

case of a slowly varying background potential temperature θ̄(z). The momentum
equation in this system is

D~u

Dt
+ cp∇(π ′θ̄) =

~gθ′

θ̄
.

This model is valid if the perturbations in the potential temperature and the Exner
function are small compared to the vertically varying background state. This is not
the case in the heated cavity benchmark case presented later in this thesis. Also, the
background potential temperature is assumed to be slowly varying, which is not the
case in the stratosphere [7].

1.1.4 The Pseudo-Incompressible Model

Durran [7] introduced the pseudo-incompressible system

D~u

Dt
+ cpθ∇π ′ =

~gθ′

θ̄
, (1.3)

∇ · (ρ̄θ̄~u) =
H

cpπ̄
, (1.4)

Dθ

Dt
=
H

cpπ̄

θ

ρ̄θ̄
. (1.5)
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It is important to note that unlike the original anelastic model by Batchelor, the back-
ground quantities in Durran’s model need not form an adiabatic state.

Durran derived the pseudo-incompressible equation from the equation of state of
dry air

π =

(

R

p0
ρθ

)R/cv

,

where cv is the specific heat of the gas during constant volume processes. The only
assumptions he made were that

π ′ ≪ π̄ ,

and that the time-scale associated with the perturbations is much longer than that of
sound wave propagation. If the perturbation time-scale is similar to that of sound
waves, the time-steps for the pseudo-incompressible model would also have to be very
small, and there would not be much to save in terms of computational efficiency any-
way.

The pseudo-incompressible system conserves a form of energy

E =
ρ̄θ̄

θ

(

u2 + v2 + w2

2
+ gz

)

+ cvρ̄T̄.

The only difference compared to the fully compressible energy conservation is that the

actual density ρ is replaced by
ρ̄θ̄

θ
.

1.2 The Spectral Element Method

1.2.1 The Element Method

Element methods approximate the solution of partial differential equations (PDEs)
within a pre-selected function space. The derivation of the numerical model for an
element method is usually more involved than for finite difference methods, which
approximate the differentiation operators by finite differences. This extra complexity
can sometimes be justified by the straightforward handling of geometrically compli-
cated domains and grids, and the flexibility that arises from being able to chose the
function space that is used to approximate the solution.

Assume we want to solve the PDE

L(u(~x)) = 0

on the domain Ω where L is some differential operator. We try to approximate the
solution u(~x) with a linear combination

u(~x) ≈ û(~x) =
n

∑
j=1

u jh j(~x)

of basis functions h j(~x). Each basis function is normally only non-zero on a subdomain
of Ω, sometimes referred to as an element. Solving the PDE is now reduced to finding
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the coefficients u j that somehow give the ’best’ approximation to the real solution.
There are many good candidates for norms that can be used to measure how well a
function approximates another. Intuitively, it seems that to minimise the maximum
absolute error is the way to go. Unfortunately, this norm is very hard to deal with.
It is much simpler to minimise the sum or integral of the square of the error, called
least-squares approximation. Now since we do not generally know the exact solution,
we need to work with the residual

R(û) = L(û),

i.e. what is left over when we insert our approximated solution into the PDE. With
least squares, it gives the problem

min
u j∈R

(

∫

Ω
R(û,~x)2dΩ

)

.

This can be differentiated with respect to the unknown coefficients u j, so that instead
we get an equation

∫

Ω
R(û,~x)

∂R(û,~x)

∂û
dΩ = 0, (1.6)

that can be solved to find the unknown coefficients û. If the basis functions are cho-
sen so that the rest of the integral can be evaluated (either analytically or numerically),
then we are left with a linear system of equations to solve. Piecewise linear basis func-
tions (triangle hats) constitute a popular choice, because they yield relatively simple
systems. Note that instead of equation (1.6), it is common to use a slightly different
version, replacing the differentiated residual with a more convenient ’weight’ func-
tion, e.g.

∫

Ω
R(û,~x)h j(x)dΩ = 0, j = 1...n

which is called a Galerkin method, because the weight functions are the same as the ba-
sis functions. This is what is used in the code for this project. For a better introduction
to element methods see e.g. Langtangen [8].

1.2.2 The Spectral Element Method

A key question is how to chose the basis functions so that we get the most accurate so-
lution, while still arriving at a linear system of equations that can be solved efficiently.
Most common choices, including triangle hats, lead to polynomial accuracy, e.g. the
error satisfies

||u− û|| ≤ C∆xp

where C is some constant, ∆x is the grid spacing and p is a constant, usually 1 or 2. The
spectral element method uses basis functions that allow for faster spatial convergence.
Spectral accuracy means that the error is bounded by

||u− û||2 ≤ Ce−n.
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Figure 1.1: The third basis function of a six point Gauss-Lobatto-Legendre grid

i.e. decays exponentially with the number of terms in a series expansion of the solu-
tion on each element. The spectral element method that is used here has a family of
orthonormal polynomials as a basis for the solution. An orthonormal family of func-
tions hi(x) with respect to the inner product 〈·, ·〉 satisfies

〈hi , h j〉 =

{

1 i = j

0 i 6= j
.

In order to make numerical integration as accurate and simple as possible, the poly-
nomials are chosen from the Gauss-Lobatto quadrature points. It is possible to inte-
grate a (2n− 1)th degree polynomial f (x) exactly with the quadrature rule

∫ 1

−1
f (x)dx =

n

∑
j=1

f (x j)w j

if the points x j and the weights w j are chosen carefully. The Gauss Lobatto points are
−1, 1, and the extremal points of the n − 1th degree Legendre polynomial [9]. As-
suming that there are n Gauss-Lobatto points, the k’th basis function is the unique
polynomial of degree n− 1 that has value one in the k’th Gauss-Lobatto point and zero
in all the others.

See e.g. Deville et al[10] for more on spectral element methods.

7



Figure 1.2: The third basis function of a 6 x 6 x 6 point Gauss-Lobatto-Legendre grid
(rendered with a clipping plane)
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Chapter 2

Mathematical Model

2.1 Durran’s Model

We add Coriolis forces, viscous forces and source terms ~F, J, to Durran’s model (eqs.
(1.3) (1.4) (1.5)). From this, we get a closed set of governing equations

Du

Dt
− 2Ωv sin(α) + cpθ

∂π ′

∂x
= Fx(~x, t) +

µ

ρ̄(z)
∇2(u), (2.1)

Dv

Dt
+ 2Ωu sin(α) + cpθ

∂π ′

∂y
= Fy(~x, t) +

µ

ρ̄(z)
∇2(v), (2.2)

Dw

Dt
− 2Ωu cos(α) + cpθ

∂π ′

∂z
= g

θ′

θ̄
+ Fz(~x, t) +

µ

ρ̄(z)
∇2(w), (2.3)

∂θ
∂t

+ ~u · ∇θ =
H

cpπ̄

θ

ρ̄θ̄
+

θ̄

g
J(~x, t), (2.4)

∇ · (ρ̄θ̄~u) =
H

cpπ̄
, (2.5)

where the unknowns are the 3-d velocity field ~u = u~i + v~j + w~k, the potential temper-
ature θ and the Exner function π . The variables θ and π have been decomposed into
temporally constant backgrounds θ̄ and π̄ and variable perturbations θ′ and π ′.

π(~x, t) = π̄(z) + π ′(~x, t)

θ(~x, t) = θ̄(z) +θ′(~x, t)

The potential temperature and the Exner function can be combined to restore the
temperature variable through the relation

T = πθ.

The equation of state for dry air relates the Exner function and the potential tempera-
ture to the density:

π = (
R

p0
ρθ)

R

cv

9



Symbol Meaning Typical value

Ω Rotation rate of the planet 7.27e-5 s−1

α Angle north of the equator 0

cp Specific heat (of the fluid) 1003.0 J/(kg K)

Fx|y|z(~x, t) Momentum forcing term 0

µ Fluid viscosity 1.8e-5 Pa s

g Gravity constant 9.81 m/s2

H Heating per unit volume 0

J(~x, t) Heat source term 0

Pr Prandtl number 0.71

Table 2.1: Overview of symbols.

p = ρRT.

It was not necessary to add the Coriolis forces to the momentum equations for the
cases presented in this thesis. However, the viscous friction term in the momentum
equation is necessary, because it smoothes small-scale structures and makes the algo-
rithm more stable.

2.1.1 Heating

The treatment of the heating termH is of great importance for the solution algorithms
needed to treat the system of equations. If the heat diffusion is to be represented byH,
we get

H = ∇ · (k∇T) (2.6)

where k is the thermal conductivity [11]. It equals

k =
cpµ

Pr
.

We will assume that k is approximately constant, and pull it outside of the divergence
operator. If we insertH into the heat and continuity equations, we get

∂θ
∂t

+ u · ∇θ =
µ

Prπ̄

θ

ρ̄θ̄
∇2(πθ) +

θ̄

g
J(~x, t), (2.7)

and
∇ · (ρ̄θ̄~u) =

µ

Prπ̄
∇2(πθ).
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Heating is of little importance in some of the physical cases that we investigate
later. As can be seen from the thermal convection benchmark case, the treatment of the
heating term has not been as successful as could have been hoped for. Therefore, we
will consider the model also in the case whereH = 0. The derivation of the numerical
model will include the full version ofH. Once the full method is developed, it is fairly
easy to remove the extra heating terms so a simpler method can be tested.

2.2 Linearisation

Notice that the heating introduces a new variable, the Exner function π , into the heat
equation. It is also a non-linear term, which will require a different level of compu-
tational complexity to solve. As we will see later, the potential temperature θ will be
assumed known at the time the continuity equation is solved, so it is not a big problem
there.

A closer look at the non-linear terms of the heat equation is needed. Using the
perturbation decomposition of π and θ, we get

θ∇2(πθ) = (θ̄ +θ′)∇2(π̄θ̄ + π̄θ′ + π ′θ̄ + π ′θ′).

Thus eight terms need to be examined. We explore two alternatives for dealing with
these terms. The simplest possible linearisation is to drop the non-linear terms of both
equations:

Dθ

Dt
=

µ

Prπ̄ρ̄

(

∇2(π̄θ̄ + π̄θ′ + π ′θ̄) +
θ′

θ̄
∇2(π̄θ̄)

)

+
θ̄

g
J(~x, t), (2.8)

∇ · (ρ̄θ̄~u) =
µ

Prπ̄
∇2(π̄θ̄ + π ′θ̄ + π̄θ′).

This approach has a few drawbacks, one is that the heating is now inconsistent in the
two terms of the heat equation (2.8). There is another problem with dropping the term
π̄θ′, since Durran does not assume

θ′ ≪ θ̄

in his derivation of the model. This will impose extra restrictions on the use of the
code, which we want to avoid if possible. Lastly, this approach does not remove the
problem we have with π ′ appearing in the heat equation. If we drop π ′ from the heat
equation alltogether, then another inconsistency in the treatment of H is introduced.

Another approach is to extrapolate some parts of the non-linear terms. We intro-
duce the quantities π̃ ′ and θ̃. They are extrapolated from the values of π ′ and θ at
previous time-steps, using first or higher-order extrapolation. It remains to investigate
the effects of this approach with regards to the stability and accuracy of the scheme
and the allowed time-step size.

The chosen approach is to extrapolate terms in the heat equation.

Dθ

Dt
=

µθ̃

Prπ̄θ̄ρ̄
∇2(π̄θ̄ + π̄θ′ + π̃ ′θ̃) +

θ̄

g
J(~x, t). (2.9)

With this model, we make two additional assumptions that Durran did not make,
namely that θ̃ and π̃ ′ can approximate θ and π ′ sufficiently well with extrapolation.
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Chapter 3

Numerical Scheme

It is essential for the implementation effort that the full set of equations are broken
down into manageable parts of similar form. The heat equation has been approximated
into equation (2.9) so that it is decoupled from the variable π ′. The other equations
have been left unmodified.

3.1 Operator Splitting

In order to make the approximated heat equation (2.9) fit into the standard Helmholtz
solver, it is necessary to introduce a new quantity

φ = π̄θ = φ̄ +φ′ = π̄θ̄ + π̄θ′.

Inserting this into equation (2.9), multiplying by π̄ and reorganising gives

Dφ

Dt
−

φ~u · ∇π̄

π̄
=

µθ̃

Prρ̄θ̄

(

∇2(φ) +∇2(π̃ ′θ̃)
)

+
φ̄

g
J(~x, t),

which is split into an explicit part

∂φ
∂t

+ ~u · (∇φ−
φ∇π̄

π̄
) = 0, (3.1)

and an implicit part

3

2
φ− 2φ∗1 +

1

2
φ∗2

△t
−

µθ̃

Prρ̄θ̄
∇2(φ) =

µθ̃

Prρ̄θ̄
∇2(π̃ ′θ̃) +

φ̄

g
J(~x, t). (3.2)

Here, φ∗1 and φ∗2 are the solutions of the explicit part (3.1), and enter the equation
through a second-order backwards time differentiation scheme (BDF2). φ∗i models the
solution of the explicit problem

∂φ∗i (s)

∂s
= Aφ∗i (s), 0 < s < tn+1 − tn+1−i,

φ∗i (0) = φ(tn+1−i),

13



where

Aφ∗ = −~u ·

(

∇φ∗ −
φ∗∇π̄

π̄

)

.

The implicit part can be rewritten to fit the variable coefficient Helmholtz equation

−ν∇2(φ) + λ(~x, t)φ = f (~x, t), (3.3)

with
ν =

µ

Pr
,

λ(~x, t) =
3ρ̄θ̄

2θ̃△t
,

f (~x, t) =
ρ̄θ̄

θ̃

(

4φ∗1 − 2φ∗2
2△t

+
φ̄

g
J(~x, t)

)

+
µ

Pr
∇2(π̃ ′θ̃).

In order to solve the momentum / continuity eqs. (2.1) (2.2) (2.3) (2.5), we use
the operator-integration-factor method suggested by Maday et. al. [12], splitting the
system into an explicit and an implicit part. The explicit part is

∂~u
∂t

+ ~u · ∇~u +A~u = 0, (3.4)

where

A =















0 −2Ω sinα 0

2Ω sinα 0 0

−2Ω cosα 0 0















,

and the corresponding implicit problem is

3

2
~u− 2~u∗1 +

1

2
~u∗2

△t
−

µ

ρ̄
∇2(~u) + cpθ∇π ′ = θ′

g

θ̄
~k + ~F(~x, t). (3.5)

∇ · (ρ̄θ̄~u) =
µ

Prπ̄
∇2(π̄θ̄ + π ′θ̄ + π̄θ′ + π ′θ′).

This implicit system will hereafter be referred to as the ’Modified Stokes Problem’. Its
discretisation and solution algorithm will be discussed in detail in section 3.2.

The explicit problems in both the heat and momentum equations are solved using
a Runge-Kutta (RK) time integration method. The explicit integration scheme can op-
tionally divide each implicit time-step ∆t into a number of explicit time steps ∆t∗. RK
schemes can have a local truncation error of arbitrary order in ∆t∗. A second-order RK
method will use two function evaluations in each explicit time-step, with higher order
methods using more, thus being more expensive. A second and third order RK method
is used in the code by Wasberg [13], which is re-used for this project. The stability of
the explicit time step length is assessed by looking at the difference between the results
of the second and third order methods. The method will decrease the explicit time-step
length if the two results disagree too much.
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3.2 Discretisation of the Modified Stokes Problem

We want to solve the equations

λ~u− ν(z)∇2(~u) + β(~x, t)∇π ′ = ~f (3.6)

and
∇ · (ρ̄θ̄~u) = γ(z)∇2(θπ̄) + γ(z)∇2(π ′θ̄), (3.7)

where

~f =
2

∆t
~u∗1 −

1

2∆t
~u∗2 +

gθ′

θ̄
~k + ~F(~x, t),

ν(z) =
µ

ρ̄(z)
,

β(~x, t) = cpθ,

λ =
3

2∆t
,

γ(z) =
µ

Prπ̄(z)
.

3.2.1 Weak Form

The weak formulation of the ith component of eq. (3.6) and eq. (3.7) is: Find ui ∈
X, π ′ ∈ Y so that

λ

∫

Ω
uivdΩ +

∫

Ω
∇ui∇(νv)dΩ−

∫

Ω
π ′

∂βv

∂xi
dΩ =

∫

Ω
f ivdΩ, ∀v ∈ X,

and
∫

Ω
∇ · ρ̄θ̄uqdΩ =

∫

Ω
γ(z)∇2(π̄θ)qdΩ +

∫

Ω
γ(z)∇2(π ′θ)qdΩ, ∀q ∈ Y,

where X and Y are the function spaces we restrict ui and π ′ to, respectively.
The variables will be discretised on two different grids, because the pressure-like

quantity π can give rise to spurious modes if solved for on the same grid as the other
quantities. This would destroy the uniqueness of the solution [14]. The grids are an
N-point Gauss-Lobatto grid (as described in chapter 1) which includes the element
boundaries −1, 1, and one N − 2 point Gauss grid with different points that do not
include the element boundaries. The Gauss points are based on the zeroes of the N− 3
degree Legendre polynomial.

Let {σn}
N−1
n=1 and {ηn}

N−1
n=1 be the Gauss quadrature weights and points respectively,

and let {ρ j}
N
j=0 and {ξ j}

N
j=0 be the Gauss-Lobatto quadrature weights and points re-

spectively.
We define two discrete inner products to approximate the integrals:

〈 f (x), g(x)〉 :=
N−1

∑
j=1

f (η j)g(η j)σ j
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( f (x), g(x)) :=
N

∑
j=0

f (ξ j)g(ξ j)ρ j

With these inner products, we can write the approximated weak form of the momen-
tum and continuity equations

λ(ui , v) + (∇ui ,∇(νv))− 〈π ′,
∂βv

∂xi
〉 = ( f , v), ∀v ∈ X,

and

〈∇ · (ρ̄θ̄u), q〉 = 〈γ(z)∇2(π̄θ), q〉+ 〈γ(z)∇2(π ′θ), q〉, ∀q ∈ Y,

respectively. Note that partial integration of the viscous friction and Exner gradient
terms (Green’s Lemma) imposes the boundary conditions

∫

∂Ω
νv

∂u

∂n
dΓ = 0, ∀v ∈ X,

and
∫

∂Ω
π ′βvdΓ = 0, ∀v ∈ X.

It is tempting to avoid the partial integration in the Exner gradient term of the momen-
tum equation. This leads to a simpler form with one term instead of the two we get
from the product rule of differentiation of β and v. This was tried and in practice that
form was less stable than the one we get from partial integration.

3.2.2 Discretisation in 1-d

The product rule of differentiation and the assumption that we work with the field of
real numbers, give

λ(u, v) + (∇u, ν∇v) + (∇u, v∇ν)− 〈π ′, β
∂v

∂xi
〉 − 〈π ′, v

∂β

∂xi
〉 = ( f , v), ∀v ∈ X,

and

〈ρ̄θ̄∇ · u, q〉+ 〈ρ̄u · ∇θ̄, q〉+ 〈θ̄u · ∇ρ̄, q〉

= 〈γπ̄∇2(θ), q〉+ 〈γθ∇2(π̄), q〉+ 2〈γ∇π̄ · ∇θ, q〉

+〈γπ ′∇2(θ), q〉+ 〈γθ∇2(π ′), q〉+ 2〈γ∇π ′ · ∇θ, q〉, ∀q ∈ Y.

Let the test functions for the Gauss-Lobatto and the Gauss grid be v(i,k)(x) = hk
i (x)

and q( j,k) = gk
j(x). The function hk

i (x) is the Lagrange interpolant that has value zero

in all except the ith Gauss-Lobatto grid points of the kth element, where it has value
one. Similarly, gk

j(x) is the Lagrange interpolant of the Gauss grid. Here, and in the

following, i = 0, 1, ..., N and j = 1, 2, ..., N − 1. Further, let hi,r = hi(ηr) when r =
1, ..., N − 1 and hi,r = hi(ξr) when r = 0, ..., N. Similarly, we define gi,r = gi(ηr).
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We approximate the variables and background quantities using these basis func-
tions. Note that θ is calculated on a Gauss-Lobatto grid in the heat equation solver, but
it is interpolated onto a Gauss grid in the Stokes problem.

uk(x) ≈
N

∑
n=0

uk
nhk

n(x), θk(x) ≈
N−1

∑
n=1

θk
ngk

n(x), π k(x) ≈
N−1

∑
n=1

π k
ngk

n(x)

νk(x) ≈
N

∑
n=0

νk
nhk

n(x), βk(x) ≈
N−1

∑
n=1

βk
ngk

n(x), γk(x) ≈
N−1

∑
n=1

γk
ngk

n(x)

Since X is spanned by the basis functions hi(x), we can replace the ∀v ∈ X restriction
by requiring that the equation holds for all the basis functions. The same applies to the
∀q ∈ Y requirement. We note that sums over the K elements appear in all terms, and
drop these summations and the superscripts k, to avoid cluttering. From this, we get
the equations:

λ
N

∑
r=0

N

∑
m=0

umhm,rhi,rρr +
N

∑
r=0

N

∑
m=0

N

∑
n=0

umνnh′m,rhn,rh
′
i,rρr +

N

∑
r=0

N

∑
m=0

N

∑
n=0

umνnh′m,rh′n,rhi,rρr

−
N−1

∑
r=1

N−1

∑
m=1

N−1

∑
n=1

π ′mβngm,rgn,rh
′
i,rσr −

N−1

∑
r=1

N−1

∑
m=1

N−1

∑
n=1

π ′mβngm,rg′n,rhi,rσr

=
N

∑
r=0

N

∑
m=0

fmhm,rhi,rρr, i = 0...N,

and

N−1

∑
r=1

N

∑
m1=0

N

∑
m2=0

N

∑
m3=0

um1ρ̄m2θ̄m3 h′m1 ,rhm2 ,rhm3 ,rg j,rσr

+
N−1

∑
r=1

N

∑
m1=0

N

∑
m2=0

N

∑
m3=0

um1ρ̄m2θ̄m3 hm1 ,rh
′
m2 ,rhm3 ,rg j,rσr

+
N−1

∑
r=1

N

∑
m1=0

N

∑
m2=0

N

∑
m3=0

um1ρ̄m2θ̄m3 hm1 ,rhm2 ,rh
′
m3 ,rg j,rσr

=
N−1

∑
r=1

N−1

∑
m1=1

N−1

∑
m2=1

N−1

∑
m3=1

θm1π̄m2γm3 g′′m1 ,rgm2 ,rgm3 ,rg j,rσr

+
N−1

∑
r=1

N−1

∑
m1=1

N−1

∑
m2=1

N−1

∑
m3=1

θm1 π̄m2γm3 gm1 ,rg′′m2 ,rgm3 ,rg j,rσr

+2
N−1

∑
r=1

N−1

∑
m1=1

N−1

∑
m2=1

N−1

∑
m3=1

θm1 π̄m2γm3 g′m1 ,rg′m2 ,rgm3 ,rg j,rσr

+
N−1

∑
r=1

N−1

∑
m1=1

N−1

∑
m2=1

N−1

∑
m3=1

θm1π
′
m2

γm3 g′′m1 ,rgm2 ,rgm3 ,rg j,rσr

+
N−1

∑
r=1

N−1

∑
m1=1

N−1

∑
m2=1

N−1

∑
m3=1

θm1π
′
m2

γm3 gm1 ,rg′′m2 ,rgm3 ,rg j,rσr

+2
N−1

∑
r=1

N−1

∑
m1=1

N−1

∑
m2=1

N−1

∑
m3=1

θm1π
′
m2

γm3 g′m1 ,rg′m2 ,rgm3 ,rg j,rσr, j = 1...N − 1.
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Now, introduce the operators

2

lk
Di j =

∂h j(ξi)

∂x
,

2

lk
D̃i j =

∂h j(ηi)

∂x
,

2

lk
D̂i j =

∂g j(ηi)

∂x
,

4

l2
k

D̂2
i j =

∂2g j(ηi)

∂x2
, T̃i j = h j(ηi).

Using these operators, and orthonormality of the basis functions hi,r = δir (Kronecker
delta) for r = 0, ..., N and g j,r = δ jr for r = 1, ..., N − 1, we get

λuiρi +
4

l2
k

N

∑
m1=0

N

∑
m2=0

um1νm2 Dm2iDm2m1ρm2 +
4

l2
k

N

∑
m1=0

N

∑
m2=0

um1νm2 Dim1
Dim2

ρi

−
2

lk

N−1

∑
r=1

π ′rβrD̃riσr −
2

lk

N−1

∑
r=1

N−1

∑
n=1

π ′rβnD̂rnT̃riσr = fiρi, i = 0...N,

and

2

lk

N

∑
m1=0

N

∑
m2=0

N

∑
m3=0

um1ρ̄m2θ̄2,m3
D̃ jm1

T̃jm2
T̃jm3

σ j

+
2

lk

N

∑
m1=0

N

∑
m2=0

N

∑
m3=0

um1ρ̄m2θ̄2,m3
T̃jm1

D̃ jm2
T̃jm3

σ j

+
2

lk

N

∑
m1=0

N

∑
m2=0

N

∑
m3=0

um1ρ̄m2θ̄2,m3
T̃jm1

T̃jm2
D̃ jm3

σ j

=
4

l2
k

N−1

∑
m1=1

θm1 π̄ jγ jD̂
2
jm1

σ j +
4

l2
k

N−1

∑
m2=1

θ jπ̄m2γ jD̂
2
jm2

σ j

+
8

l2
k

N−1

∑
m1=1

N−1

∑
m2=1

θm1 π̄m2γ jD̂ jm1
D̂ jm2

σ j

+
4

l2
k

N−1

∑
m1=1

θm1π jγ jD̂
2
jm1

σ j +
4

l2
k

N−1

∑
m2=1

θ jπm2γ jD̂
2
jm2

σ j

+
8

l2
k

N−1

∑
m1=1

N−1

∑
m2=1

θm1πm2γ jD̂ jm1
D̂ jm2

σ j, j = 1...N − 1.

Putting it all together on matrix form, we get







M −G

N −S













u

π ′






=







B f

Sπ̄
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Here, the matrices are given by

Mi j = λρiδi j +
4

l2
k

N

∑
m2=0

νm2 Dm2iDm2 jρm2 +
4

l2
k

N

∑
m2=0

νm2 Di jDim2
ρi

Gi j =
2

lk
(β jD̃ jiσ j +

N−1

∑
n=1

βnD̂ jnT̃jiσ j)

Bi j = ρiδi j

Ni j =
2

lk

N

∑
m2=0

N

∑
m3=0

ρ̄m2θ̄m3 D̃i jT̃im2
T̃im3

σi +
2

lk

N

∑
m2=0

N

∑
m3=0

ρ̄m2θ̄m3 T̃i jD̃im2
T̃im3

σi

+
2

lk

N

∑
m2=0

N

∑
m3=0

ρ̄m2θ̄m3 T̃i jT̃im2
D̃im3

σi

Si j =
4

l2
k

N−1

∑
m=1

θmγiD̂
2
imσiδi j +

4

l2
k

θiγiD̂
2
i jσi +

8

l2
k

N−1

∑
m=1

θmγiD̂imD̂i jσi.

By using the block Gauss elimination procedure, we get







H −G

0 S + MH−1G













u

π ′






=







B f

−s−MH−1B f






.

How to solve this system is discussed in the last part of the 3-d section.

3.2.3 Discretisation in 3-d

Before we dive into the gory details of the 3-d discretisation, a small comment about
the notation is helpful. When we write for instance uixiyiz , you may still think of u
as being a vector, with uixiyiz

= uix+Nx(iy+Nyiz). The same thing goes with matrices:

Mixiyiz jx jy jz
can be thought of as a regular 2-d matrix Mi j with i = ix + Nx(iy + Nyiz)

and j = jx + Nx( jy + Ny jz).
Note that here, as in the 1-d section, the element summations and superscripts k are

dropped to avoid cluttering. We write

~u = u1~i + u2~j + u3~k

and split the momentum equation into its three components. Each of the components
of ~u will be approximated by

ul(x, y, z) ≈
Nx

∑
mx=0

Ny

∑
my=0

Nz

∑
mz=0

ul
mxmymz

hmx(x)hmy(y)hmz (z).

The test functions v remain scalar, and are given by

v(ix ,iy,iz)(x, y, z) = hix
(x)hiy

(y)hiz
(z).
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The weak form of each component, l = 1, 2, 3, of the momentum equation is

λ(ul , v) +
3

∑
i=1

(
∂ul

∂xi
, ν

∂v

∂xi
) +

3

∑
i=1

(
∂ul

∂xi
, v

∂ν

∂xi
)− 〈π ′, β

∂v

∂xl
〉 − 〈π ′, v

∂β

∂xl
〉 = ( f l , v),

∀v ∈ X. The weak form of the continuity equation is

3

∑
l=1

〈ρ̄θ̄
∂ul

∂xl
, q〉+

3

∑
l=1

〈ρ̄ul ∂θ̄
∂xl

, q〉+
3

∑
l=1

〈θ̄ul ∂ρ̄

∂xl
, q〉

=
3

∑
l=1

〈γπ̄
∂2θ

∂x2
l

, q〉+
3

∑
l=1

〈γθ
∂2π̄

∂x2
l

, q〉+ 2
3

∑
l=1

〈γ
∂π̄

∂xl

∂θ
∂xl

, q〉

+
3

∑
l=1

〈γπ ′
∂2θ

∂x2
l

, q〉+
3

∑
l=1

〈γθ
∂2π ′

∂x2
l

, q〉+ 2
3

∑
l=1

〈γ
∂π ′

∂xl

∂θ
∂xl

, q〉, ∀q ∈ Y.

Notice that this discretisation now contains 27 inner product terms! Writing it out
with the approximations and search functions and using the orthogonality of the basis
functions, we get the lth momentum equation

λul
ixiyiz

ρixρiyρiz

+
Nx

∑
rx=0

Nx

∑
mx=0

ul
mxiyiz

νixiyiz
h′mx ,rx

h′ix ,rx
ρrxρiy

ρiz
+

Ny

∑
ry=0

Ny

∑
my=0

ul
ixmyiz

νixiyiz
h′my ,ry

h′iy ,ry
ρix

ρryρiz

+
Nz

∑
rz=0

Nz

∑
mz=0

ul
ixiymz

νixiyiz h′mz ,rz
h′iz ,rz

ρixρiyρrz +
Nx

∑
mx=0

Nx

∑
nx=0

ul
mxiyiz

νnxiyizh′mx ,ix
h′nx,ix

ρixρiyρiz

+
Ny

∑
my=0

Ny

∑
ny=0

ul
ixmyiz

νixnyiz
h′my ,iy

h′ny,iy
ρix

ρiy
ρiz

+
Nz

∑
mz=0

Nz

∑
nz=0

ul
ixiymz

νixiynz
h′mz ,iz

h′nz ,iz
ρix

ρiy
ρiz

−Rl = f l
ixiyiz

ρix
ρiy

ρiz
, ix = 0...Nx , iy = 0...Ny, iz = 0...Nz,

where

R1 =
Nx−1

∑
rx=1

Ny−1

∑
ry=1

Nz−1

∑
rz=1

π ′rxryrz
βrxryrz h′ix ,rx

hiy ,ryhiz ,rzσrxσryσrz

+
Nx−1

∑
rx=1

Ny−1

∑
ry=1

Nz−1

∑
rz=1

Nx−1

∑
nx=1

π ′rxryrz
βnxryrz g′nx,rx

hix ,rx
hiy ,ry

hiz ,rz
σrxσryσrz

R2 =
Nx−1

∑
rx=1

Ny−1

∑
ry=1

Nz−1

∑
rz=1

π ′rxryrz
βrxryrz hix ,rx

h′iy ,ry
hiz ,rz

σrxσryσrz

+
Nx−1

∑
rx=1

Ny−1

∑
ry=1

Nz−1

∑
rz=1

Ny−1

∑
ny=1

π ′rxryrz
βrxnyrz g′ny,ry

hix ,rx
hiy ,ry

hiz ,rz
σrxσryσrz

R3 =
Nx−1

∑
rx=1

Ny−1

∑
ry=1

Nz−1

∑
rz=1

π ′rxryrz
βrxryrz hix ,rx

hiy ,ry
h′iz ,rz

σrxσryσrz

+
Nx−1

∑
rx=1

Ny−1

∑
ry=1

Nz−1

∑
rz=1

Nz−1

∑
nz=1

π ′rxryrz
βrxrynz g′nz,rz

hix ,rx
hiy ,ry

hiz ,rz
σrxσryσrz .
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The continuity equation becomes

Nx

∑
mx=0

Ny

∑
my=0

Nz

∑
mz=0

Nx

∑
nx=0

Ny

∑
ny=0

Nz

∑
nz=0

Nx

∑
sx=0

Ny

∑
sy=0

Nz

∑
sz=0

(ρ̄mxmymzθ̄nxnynzu
1
sxsysz

hmx ,ix hmy,iyhmz ,izhnx ,ixhny,iyhnz ,izh′sx ,ix
hsy ,iyhsz ,izσixσiyσiz

+ρ̄mxmymzθ̄nxnynzu2
sxsysz

hmx ,ix
hmy ,iy

hmz ,iz
hnx,ix

hny,iy
hnz,iz

hsx ,ix
h′sy ,iy

hsz ,iz
σix

σiy
σiz

+ρ̄mxmymzθ̄nxnynzu3
sxsysz

hmx ,ix
hmy ,iy

hmz ,iz
hnx,ix

hny,iy
hnz,iz

hsx ,ix
hsy ,iy

h′sz ,iz
σix

σiy
σiz

+ρ̄mxmymzθ̄nxnynzu1
sxsysz

hmx ,ixhmy ,iyhmz ,izh′nx,ix
hny,iyhnz,izhsx ,ixhsy ,iyhsz ,izσixσiyσiz

+ρ̄mxmymzθ̄nxnynzu2
sxsysz

hmx ,ix
hmy ,iy

hmz ,iz
hnx,ix

h′ny,iy
hnz,iz

hsx ,ix
hsy ,iy

hsz ,iz
σix

σiy
σiz

+ρ̄mxmymzθ̄nxnynzu3
sxsysz

hmx ,ix
hmy ,iy

hmz ,iz
hnx,ix

hny,iy
h′nz,iz

hsx ,ix
hsy ,iy

hsz ,iz
σix

σiy
σiz

+ρ̄mxmymzθ̄nxnynzu1
sxsysz

h′mx ,ix
hmy ,iyhmz ,izhnx,ix hny,iyhnz,izhsx ,ixhsy ,iyhsz ,izσixσiyσiz

+ρ̄mxmymzθ̄nxnynzu2
sxsysz

hmx ,ix
h′my ,iy

hmz ,iz
hnx,ix

hny,iy
hnz,iz

hsx ,ix
hsy ,iy

hsz ,iz
σix

σiy
σiz

+ρ̄mxmymzθ̄nxnynzu3
sxsysz

hmx ,ix
hmy ,iy

h′mz ,iz
hnx,ix

hny,iy
hnz,iz

hsx ,ix
hsy ,iy

hsz ,iz
σix

σiy
σiz

)

=
Nx−1

∑
mx=1

θmxiyiz
π̄ixiyiz

γixiyiz
g′′mx ,ix

σix
σiy

σiz
+

Ny−1

∑
my=1

θixmyiz
π̄ixiyiz

γixiyiz
g′′my,iy

σix
σiy

σiz

+
Nz−1

∑
mz=1

θixiymz
π̄ixiyiz

γixiyiz
g′′mz ,iz

σix
σiy

σiz
+

Nx−1

∑
nx=1

θixiyiz
π̄nxiyiz

γixiyiz
g′′nx,ix

σix
σiy

σiz

+
Ny−1

∑
ny=1

θixiyiz π̄ixnyizγixiyiz g′′ny,iy
σixσiyσiz +

Nz−1

∑
nz=1

θixiyiz π̄ixiynzγixiyiz g′′nz ,iz
σixσiyσiz

+
Nx−1

∑
mx=1

Nx−1

∑
nx=1

(

θmxiyiz
π̄nxiyiz

+θmxiyiz
π ′nxiyiz

)

γixiyiz
g′mx ,ix

g′nx ,ix
σix

σiy
σiz

+
Ny−1

∑
my=1

Ny−1

∑
ny=1

(

θixmyiz
π̄ixnyiz

+θixmyiz
π ′ixnyiz

)

γixiyiz
g′my ,iy

g′ny,iy
σix

σiy
σiz

+
Nz−1

∑
mz=1

Nz−1

∑
nz=1

(

θixiymz π̄ixiynz +θixiymzπ
′
ixiynz

)

γixiyiz g′mz ,iz
g′nz,iz

σixσiyσiz

+
Nx−1

∑
mx=1

θmxiyiz
π ′ixiyiz

γixiyiz
g′′mx ,ix

σix
σiy

σiz
+

Ny−1

∑
my=1

θixmyiz
π ′ixiyiz

γixiyiz
g′′my ,iy

σix
σiy

σiz

+
Nz−1

∑
mz=1

θixiymzπ
′
ixiyiz

γixiyiz g′′mz ,iz
σixσiyσiz +

Nx−1

∑
nx=1

θixiyizπ
′
nxiyiz

γixiyiz g′′nx,ix
σixσiyσiz

+
Ny−1

∑
ny=1

θixiyiz
π ′ixnyiz

γixiyiz
g′′ny,iy

σix
σiy

σiz
+

Nz−1

∑
nz=1

θixiyiz
π ′ixiynz

γixiyiz
g′′nz ,iz

σix
σiy

σiz
.

jx = 1...Nx − 1, jy = 1...Ny − 1, jz = 1...Nz − 1.
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The whole discretised system can be written on matrix form as





















M 0 0 −Gx

0 M 0 −Gy

0 0 M −Gz

Nx Ny Nz −S









































u1

u2

u3

π ′





















=





















B f 1

B f 2

B f 3

Sπ̄





















, (3.8)

where

Mixiyiz jx jy jz
= λρix

ρiy
ρiz

δix jx
δiy jy

δiz jz

+
4

l2
k

Nx

∑
rx=0

νixiyiz Drx jx Drxixρrxρiyρizδiy jyδiz jz

+
4

l2
k

Ny

∑
ry=0

νixiyiz
Dry jy

Dryiy
ρix

ρryρiz
δix jx

δiz jz

+
4

l2
k

Nz

∑
rz=0

νixiyiz Drz jz Drzizρixρiyρrzδix jxδiy jy

+
4

l2
k

Nx

∑
nx=0

νnxiyiz
Dix jx

Dixnx
ρix

ρiy
ρiz

δiy jy
δiz jz

+
4

l2
k

Ny

∑
ny=0

νixnyiz Diy jy Diynyρixρiyρizδix jxδiz jz

+
4

l2
k

Nz

∑
nz=0

νixiynz
Diz jz

Diznz
ρix

ρiy
ρiz

δix jx
δiy jy

,

Gx
ixiyiz jx jy jz

=
2

lk
(β jx jy jz

D̃ jxix
T̃jyiy

T̃jziz
σ jx

σ jy
σ jz

+
Nx−1

∑
nx=1

βnx jy jz
D̂ jxnx

T̃jxix
T̃jyiy

T̃jziz
σ jx

σ jy
σ jz

),

G
y
ixiyiz jx jy jz

=
2

lk
(β jx jy jz

D̃ jyiy
T̃jxix

T̃jziz
σ jx

σ jy
σ jz

+
Ny−1

∑
ny=1

β jxny jz
D̂ jyny

T̃jxix
T̃jyiy

T̃jziz
σ jx

σ jy
σ jz

),

Gz
ixiyiz jx jy jz

=
2

lk
(β jx jy jz

D̃ jziz
T̃jxix

T̃jyiy
σ jx

σ jy
σ jz

+
Nz−1

∑
nz=1

β jx jynz
D̂ jznz

T̃jxix
T̃jyiy

T̃jziz
σ jx

σ jy
σ jz

),
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Bixiyiz jx jy jz
= ρix

ρiy
ρiz

δix jx
δiy jy

δiz jz
,

Nx
ixiyiz jx jy jz

=
2

lk

Nx

∑
mx=0

Ny

∑
my=0

Nz

∑
mz=0

Nx

∑
nx=0

Ny

∑
ny=0

Nz

∑
nz=0

(ρ̄mxmymzθ̄nxnynz T̃ixmx
T̃iymy

T̃izmz
T̃ixnx

T̃iyny
T̃iznz

D̃ix jx
T̃iy jy

T̃iz jz
σix

σiy
σiz

+ρ̄mxmymzθ̄nxnynz T̃ixmx T̃iymy T̃izmz D̃ixnx T̃iyny T̃iznz T̃ix jx T̃iy jy T̃iz jzσixσiyσiz

+ρ̄mxmymzθ̄nxnynz D̃ixmx
T̃iymy

T̃izmz
T̃ixnx

T̃iyny
T̃iznz

T̃ix jx
T̃iy jy

T̃iz jz
σix

σiy
σiz

),

with similar forms for Ny and Nz (derivative in y- and z- components instead of x-
component), and

Sixiyiz jx jy jz
=

4

l2
k

Nx−1

∑
rx=1

θrxiyiz
γixiyiz

D̂2
ixrx

σrxσiy
σiz

δix jx
δiy jy

δiz jz

+
4

l2
k

Ny−1

∑
ry=1

θixryiz
γixiyiz

D̂2
iyry

σix
σryσiz

δix jx
δiy jy

δiz jz

+
4

l2
k

Nz−1

∑
rz=1

θixiyrzγixiyiz D̂2
izrz

σixσiyσrzδix jxδiy jyδiz jz

+
4

l2
k

θixiyiz
γixiyiz

D̂2
ix jx

σix
σiy

σiz
δiy jy

δiz jz

+
4

l2
k

θixiyizγixiyiz D̂2
iy jy

σixσiyσizδix jxδiz jz

+
4

l2
k

θixiyiz
γixiyiz

D̂2
iz jz

σix
σiy

σiz
δix jx

δiy jy

+
4

l2
k

Nx−1

∑
rx=1

θrxiyizγixiyiz D̂ixrx D̂ix jxσixσiyσizδiy jyδiz jz

+
4

l2
k

Ny−1

∑
ry=1

θixryiz
γixiyiz

D̂iyry
D̂iy jy

σix
σiy

σiz
δix jx

δiz jz

+
4

l2
k

Nz−1

∑
rx=1

θixiyrzγixiyiz D̂izrz D̂iz jzσixσiyσizδix jxδiy jy .

The first component of equation (3.8) can be transformed in the following manner:

Mun+1
1 − Gxπ ′n+1 = B f 1

Mun+1
1 − Gxπ ′n+1−MQGxπ ′n+1 = B f 1 −MQGxπ ′n+1

Mun+1
1 −MQGx(π ′n+1− π ′n) = B f 1 −MQGx(π ′n+1 − π ′n) + Gxπ ′n+1

Mun+1
1 −MQGx(π ′n+1− π ′n) = B f 1 + Gxπ ′n + rx

Here, the term

rx = −(MQ− I)Gx(π ′n+1 − π ′n)
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can be dropped if we choose Q carefully. To obtain an O(∆t3) asymptotic bound on
the error term rx, let

Q = λ−1B−1.

Insert this into the error term and remember that M = λB + A, where A is some matrix
independent from ∆t, to get

rx = −λ−1AB−1Gx(π ′n+1 − π ′n).

We have that π ′n+1 − π ′n is of order O(∆t). As ∆t → 0, M becomes dominated by
the diagonal λB term. Since u1 is multiplied by M, the truncation error in u1 from
dropping rx is O(∆t3) when ∆t → 0. This makes the overall scheme have accuracy
O(∆2).

Similar transformations applied to the second and third component give rise to the
system





















M 0 0 −MQGx

0 M 0 −MQGy

0 0 M −MQGz

Nx Ny Nz −S









































un+1
1

un+1
2

un+1
3

π ′n+1− π ′n





















=





















B f 1 + Gxπ ′n

B f 2 + Gyπ ′n

B f 3 + Gzπ ′n

Sπ̄ + Sπ ′n





















,

which can be rewritten on block triangular form as





















M 0 0 −MQGx

0 M 0 −MQGy

0 0 M −MQGz

0 0 0 −S +N









































un+1
1

un+1
2

un+1
3

π ′n+1− π ′n





















=





















B f 1 + Gxπ ′n

B f 2 + Gyπ ′n

B f 3 + Gzπ ′n

Sπ̄ + Sπ ′n −M~f −Pπ ′n





















.

The matrices

N = NxQGx + NyQGy + NzQGz,

M~f = NxM−1B f 1 + NyM−1B f 2 + NzM−1B f 3,

Pπ = NxM−1Gxπ + NyM−1Gyπ + NzM−1Gzπ ,

are introduced for convenience of notation. We get the following solution procedure
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for the Exner function and the velocities:

Mu∗1 = B f 1 + Gxπ ′n

Mu∗2 = B f 2 + Gyπ ′n

Mu∗3 = B f 3 + Gzπ ′n

(−S +N )(π ′n+1 − π ′n) = Sπ̄ + Sπ ′n − Nxu∗1 − Nyu∗2 − Nzu∗3 (3.9)

un+1
1 = u∗1 + QGx(π ′n+1 − π ′n)

un+1
2 = u∗2 + QGy(π ′n+1 − π ′n)

un+1
3 = u∗3 + QGz(π ′n+1 − π ′n)

3.3 Solving Systems of Linear Equations

The discretisation in the previous section boils down to several systems of linear equa-
tions. These systems are large in all but trivial cases. 9th order polynomials as basis
functions give element matrices with one million entries in 3-d. Non-trivial cases can
sport several hundreds or even thousands of elements, making the fully assembled sys-
tem unwieldingly large. The solver methods that require the full matrix of coefficients
to be stored in memory are not useful in such a setting. Instead, iterative methods,
which evaluate one or more matrix-vector products several times, must be used. There
are plenty of different iterative algorithms. The ones that are used in the code are the
preconditioned conjugate gradient method and the preconditioned bi-conjugate gradi-
ent method with stabilisation (BiCGstab). These are advanced algorithms which were
chosen because of their fast rate of convergence. See table 3.2 to see that one of the
linear equation solvers (BiCGstab) dominates the CPU-time for the overall PDE solver.

3.3.1 Classical Iterative Methods

Assume we want to solve the equation

Ax = b.

Introduce the splitting A = M− N to get the equivalent system of equations

Mx = Nx + b.

Now, we can hope that the scheme

Mxn+1 = Nxn + b

for which x is an equilibrium, will eventually produce an xn that is a sufficiently good
approximation for x. We start out with an initial guess x0. A better guess will use less
time to approximate the real solution to a certain accuracy, but x0 can be any value.
Several classical schemes arise from different choices of M and N. For instance, Jacobi
iteration is retrieved when selecting M as the diagonal D of A, and N = A−D:

xn+1 = D−1(A−D)xn + D−1b = D−1(Axn + b)− xn
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Another common classical scheme is Gauss-Seidel iteration, which arise when M =
D + L, i.e. the diagonal and the lower triangular part of A:

(D + L)xn+1 = Uxn + b

This system is trivial to solve, because D + L is lower triangular. Gauss-Seidel iteration
can be shown to converge whenever the spectral radius (largest absolute value of an
eigenvalue) of M−1N < 1. The rate of convergence for classical methods is usually
much slower than for modern projection-based methods.

3.3.2 The Conjugate Gradient Method

The conjugate gradient method is a member of the family known as ’projection’ or
’Krylov-subspace’ solvers. The idea is to find the closest possible approximation to x
in a given low-dimensional subspace V∗ ⊂ R

N, where N is the number of unknowns.
Such a solution x∗ is characterised by

||x− x∗|| ≤ ||x− v|| , ∀v ∈ V∗.

From a geometrical point of view, this means that the difference x− x∗ is perpendicular
to all vectors in V∗. The solution is constructed by iteratively expanding the subspace.
The procedure adds one linearly independent vector to the search subspace in each
iteration, which means that an exact solution will be reached in at most N iterations. It
is normal to use far less than N iterations. The number of iterations that are required
to reach a desired accuracy depends on the condition number

κ(A) =
λmax

λmin

where λmin and λmax are the smallest and largest eigenvalues of A, respectively. The
number of iterations is proportional to the square-root of κ(A). One way to construct
the search subspace is based on the Gram-Schmidt orthogonalisation procedure. An
A-orthogonal basis v1, ..., vk for V∗ can be iteratively constructed, for instance by using
the residual of the previous iteration as the next expansion vector. The solution x∗ in
the kth iteration is expressed in terms of the basis vectors as

x∗ =
k

∑
j=1

α jv j.

We choose the α j’s so that x − x∗ ⊥ v j, ∀v j ∈ V∗, which together with the A-
orthogonality of the basis vectors leads to an explicit formula for the α j’s:

α j =
vT

j b

vT
j Av j

This formula breaks down if the denominator is zero, so the conjugate gradient method
cannot be used if A is not positive definite, i.e. yT Ay > 0, ∀y 6= 0.
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Preconditioner Iterations u2 Iterations Exner

Identity 172 N/A

Diagonal 35 N/A

Schwarz fine grid only N/A 230

Schwarz fine + coarse grid N/A 196

Table 3.1: Performance of different preconditioners. Average number of iterations re-
quired to reach a relative (compared to the norm of the right-hand side) tolerance of
2.2e-14 for u2 and 1e-5 for the Exner solver. Thermal convection case with dt=0.001, t
= 1 to 1.01.

One challenge with spectral element methods is that the condition number of the
system that is solved in the standard Helmholtz equation grows as O(N4) (N is the
polynomial order of the basis functions). This result is due to Vandeven [15]. This
means that O(N2) iterations is required to reach an acceptable accuracy. Luckily, pre-
conditioning can improve this. The preconditioned conjugate gradient method (PCG)
involves a new matrix P−1 which is applied to the residual to create a second residual
vector which is used to construct the new search vector. The number of PCG iterations
that are required to solve a system of linear equations to a certain accuracy is governed
by the condition number of P−1A. Indeed, if P−1 = A−1, this number becomes 1.

Unfortunately, finding A−1 would require us to solve the full system that we seek
to solve. We should aim to find a preconditioner P−1 that is as close as possible to
A−1, but still relatively easy to compute. A popular choice is to extract the diagonal
of A, which is then trivial to invert. This is what is done in the implementation of the
implicit part of the heat equation (3.3) and the momentum equations (the first three
parts of equation (3.9)) in the current code. This preconditioner works fairly well, and
is ideal for the conjugate gradient method, since it preserves symmetry and positive
definiteness. Table 3.1 clearly demonstrates that the diagonal preconditioner works
well for the velocity solver. It also shows that even though the preconditioner for the
pressure equation saves a great number of iterations, much is left to desire from the
performance of the pressure solver. As table 3.2 shows, most of the CPU-time is spent
solving the pressure (or Exner) equation (part four of equation (3.9)).

3.3.3 The Stabilised Bi-Conjugate Gradient Method

As was noted in the previous section, the standard conjugate gradient method does
not handle cases where A is not positive definite. The discretised momentum equa-
tions and the derived pressure equation (equations 1-4 in equation (3.9)) are neither
symmetric nor positive definite, so a method which handles this case is needed. The
BiCGstab method does this. A detailed description of the BiCGstab method is available
in e.g. [16]. The basic algorithm is given in figure 3.1.
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1. Compute r0 := b− Ax0. Choose r∗0 s.t. (r0, r∗0) 6= 0.
2. Set p0 := r0, p∗0 := r∗0
3. For j = 0, 1, ..., until convergence DO:
4. α j := (r j, r∗j )/(Ap j , p∗j )

5. x j+1 := x j +α jp j

6. r j+1 := r j −α jAp j

7. r∗j+1 := r∗j −α jA
T p∗j

8. β j := (r j+1, r∗j+1)/(r j, r∗j )

9. p j+1 := r j+1 + β jp j

10. p∗j+1 := r∗j+1 + β jp
∗
j

11. END DO

Figure 3.1: The basic BiCGstab algorithm.

As was the case with the conjugate gradient method, a preconditioner can be ap-
plied to the BiCGstab method as well. For the momentum equations, diagonal pre-
conditioning was used. With the pressure equation, a two-level preconditioner was
chosen based on Wasberg’s implementation [13] of the overlapping Schwarz method
described in [17]. The preconditioner P−1 is constructed from finite element operators
on the spectral element grid:

P−1 = RT
0 A−1

0 R0 +
K

∑
k=1

RT
k A−1

k Rk

where the Rks are restriction operators that converts data from global- to subproblem
space and RT converts back. The A−1

k s are approximate finite element Laplacians of
each subproblem. The 0th index k represents a global coarse grid component, with
grid nodes on each local spectral element corner, while the rest are triangular elements
created from each point on the spectral element grid. The Aks (except for A0) have a
special structure which allows them to be inverted fast. The coarse subproblem must
be solved numerically, and is redundantly solved globally on each processor node. The
performance of this preconditioner is still not quite satisfactory, and also gets worse in
cases of very deep stratification, probably because it makes the operator NQG behave
less like the Laplace operator.
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Function Share CPU time

IterativeSolvers::solve_bcgs 84.3%

RungeKutta23::rk23 9.8%

IterativeSolvers::solve_cg 3.0%

PseudoIncompressible::solve 0.8%

HeatedSquareCavity::average_nusselt_number 0.6%

VP_split_pseudoinc::u_update 0.6%

VP_split_pseudoinc::u_solve 0.4%

VP_split_pseudoinc::p_rhs 0.3%

main 0.2%

PseudoIncompressible::buoyancy 0.1%

VP_split_pseudoinc::solve 0.1%

Table 3.2: Profiling chart for a run of the thermal convection case. The time spent in
most low-level functions has been charged to their higher-level callers.
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Chapter 4

Software Implementation

The implementation is based on a C++ spectral element solver for the Boussinesq ap-
proximation, written by Carl Erik Wasberg and Thor Gjesdal.

4.1 Solution Algorithm

A brief overview of the overall solution algorithm is given in figure 4.1. Most details
are omitted, so that it is easy to see the order of computation.

4.2 Program Structure

The object-orientation of the original spectral element solver made it possible to re-use
the code for this project. The whole program is broken down into data structure classes,
equation solver classes and higher-level classes that describe the physical properties of
the simulation.

The standard grid and field paradigm was applied to the data structure abstraction,
but instead of one field class, there are two types. One is for the element level and is
called Field. It contains the data values for one variable on one element. Because
the elements are 3-d and typically use around ten basis functions in each direction,
each Field instance will typically contain around one thousand coefficient values. Each
Field instance is also associated with one Grid instance. It contains the data that is
needed to interpret and work with the field values, for instance integration weights
and scale factors needed for global assembly. Operators for interpolation to other grids
are also included in the grid class. The other type of field class is called GlobalField and
contains all the pointers to the various Field classes, as well as convenience functions
that will call functions in all the Field classes to compute various quantities. See figure
4.2 for an overview of the data structure classes.

The solution algorithm is divided into solver classes to reflect how the system of
equations has been split into a heat equation part and a velocity/pressure part, both
with explicit advection parts and implicit parts. The object-oriented approach also
promotes re-use of the most generic classes such as RungeKutta23 and IterativeSolvers
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Fill u0, v0, w0, π ′0,θ0 with initial values.
n← 0, t← 0.
WHILE t < tstop DO:

θ̃← extrapolate(θn,θn−1, ...).
π̃ ′ ← extrapolate(π ′n, π ′n−1, ...).
φn ← θnπ̄ .
φ∗1 ,φ∗2 ← solution of equation (3.1) with ~u = ~un.
φn+1 ← solution of equation (3.2).
θn+1 ← φn+1/π̄ .
u∗1 , u∗2 ← solution of x-component of equation (3.4).
v∗1 , v∗2 ← solution of y-component of equation (3.4).
w∗1 , w∗2 ← solution of z-component of equation (3.4).
π ′n+1, un+1, vn+1, wn+1 are updated according to (3.9).
t← t +△t.
n← n + 1.

END DO

Figure 4.1: The simplified overall solution algorithm. Notice that the variable θ is
solved for first, then π ′ and then the velocities. In the case of no heating, H = 0, there
is no need for extrapolation of θ and π ′.

Grid

GlobalField

Field

1

1..*

1

1

Figure 4.2: The basic data structure classes.
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Figure 4.3: The solver classes, from high- to low-level. White, grey and dark grey boxes
indicate old, modified and new classes, respectively.

(see figure 4.3). The distinction between data and algorithms is not complete, since the
operators derived from the discretisation are implemented in the field classes.

Phyiscal case classes were made in order to have a consistent container for all the
physical parameters associated with each simulation case. A common interface (ab-
stract class) is used so that the algorithms can function without modification when
new physical cases are introduced. See figure 4.4.

4.3 Parallel Execution

The full solver algorithm can be parallellised by breaking the spatial domain down
into several subdomains. Several processors or machines can then cooperate by solv-
ing their assigned subproblem. Some amount of communication between each process
is required, since there are element boundary grid points shared between the differ-
ent subdomains. The serial version of the code also features communication between
neighbouring elements in the assembly of the linear system of equations. The parallell
implementation comes naturally if the assembly routine is modified with cross-process
communication using MPI (Message Passing Interface).
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Figure 4.4: The physical case classes. White and dark grey boxes indicate old and new
classes, respectively.

The communication involves a certain amount of overhead. There is also the coarse
part of the overlapping Schwarz preconditioner mentioned in chapter 3, which is not
parallellised. These factors tend to make the speed-up less than linear with the num-
ber of processors. Each processor has a certain amount of cache (fast memory), and
dividing the overall problem between many different processors tends to put a greater
portion of the overall problem in this fast memory. This effect can actually make the
speed-up better than linear in some cases. Some results were obtained from running
the code on a 32-CPU SGI Altix machine and can be seen in figure 4.5. A dual-core
laptop achieves a near 2x speed-up.

4.4 Visualisation

The output from the solver can be extremely large, involving velocity, temperature
and pressure in millions of data points. In the cases where the time-dependency is
important, the total dataset size can be many gigabytes. The results can sometimes be
parameterised into one or a few numbers, but in most cases it is useful to investigate
the full output fields.

Visualisation was done using VoluViz [18], a volume renderer developed at FFI by
Trond Gaarder, Anders Helgeland and myself. VoluViz uses slice-based volume ren-
dering to show large sets of three-dimensional data. A number of slices perpendicular
to the view direction are placed in the data domain. Data values are interpolated onto
each slice, and assigned a colour and transparency from a colour table. The slices are
then blended together in back-to-front order to produce the final image.

Vector fields pose a challenge, and volume rendering has traditionally not been
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Figure 4.5: Parallel speedup for simulation of thermal convection case from t=1 to
t=1.01 with dt=0.001.
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used as much for the purpose of investigating such fields. A technique called seed LIC
[19] was used to create volume data from the velocity fields.
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Chapter 5

Results

5.1 2-d Thermal Convection

We study flow in a square cavity with one hot and one cold vertical wall. The other
walls are insulated. Hot air will rise along the hot wall, and cold air will sink near the
cold wall. Since the fluid cannot accumulate anywhere, we expect to see a circulation.
Because we do not assume an incompressible fluid, the solution is not skew-symmetric.

5.1.1 Setup

The simulation domain is a prism as shown in figure 5.2, even though the physical
problem is 2-d. This is done to stress test the 3-d code. The physical parameters are
shown in tables 5.1 and 5.2. The boundary conditions are listed in table 5.3, and the
initial conditions are listed in table 5.4. The setup is intended to match the benchmark
case by Le Quere and Paillere [20], for which a reference solution exists.

The stratification is defined using the background functions ρ̄, π̄ and θ̄. The back-
ground quantities are set so that they are at a hydrostatic equilibrium

∂p̄

∂z
= −ρ̄g,

where p̄ = ρ̄RT̄. Solved for ρ̄, this ordinary differential equation gives

ρ̄ = ρ0 exp(−
gz

RT̄
).

Direction Length

X 0.067074 m

Y 0.067074 m

Z 0.067074 m

Table 5.1: Volume dimensions

37



Figure 5.1: Seed LIC visualisation of the time-converged flow field.

Figure 5.2: Simulation domain.
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Symbol Meaning Value

cp Specific heat 1004.5 J/(kg K)

µ Fluid viscosity 2.955e-5 Pa s

ρ0 Density at bottom 0.5884 kg/m3

g Gravity constant 9.81 m/s2

T̄ Background temperature 600 K

Pr Prandtl number 0.71

γ Constant density/volume heat capacity ratio 1.4

Ra Rayleigh number 1e6

R Specific gas constant for dry air 287 J/(kg K)

p0 Background ground pressure 101325 Pa

Table 5.2: Overview of the physical parameters.

Volume face Temperature Velocity

A Dirichlet (960 K) Dirichlet

B Dirichlet (240 K) Dirichlet

C Neumann Periodic

D Neumann Periodic

E Neumann Dirichlet

F Neumann Dirichlet

Table 5.3: Overview of the boundary conditions.
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Variable Initial value

u 0

v 0

w 0

π ′ 0

θ θ̄(z)

Table 5.4: Overview of the initial conditions.

The mean-state Exner function is defined as

π̄ =

(

p̄

p0

)

R

cp

which combined with T̄ = π̄θ̄ gives

π̄ = exp(−
gz + ln(

p0

Rρ0T̄
)RT̄

(cp + R)T̄
).

5.1.2 Results

The solution of this problem is the value of each variable in a large number of different
points. The Nusselt number is chosen as a convenient diagnostic variable, so that the
solution accuracy can be evaluated with one number only. Also, the Nusselt number is
the only number that both the cited reference solutions contain. The Nusselt number
Nu is the ratio of convective to conductive heat transport

Nu =
Q

Qo
,

where

Q =
∫

Ω

(

uT −κ
∂T

∂x

)

dΩ

and Q0 is defined similarly, but with u = 0 and T as in the case with pure heat conduc-
tion. The thermal diffusivity κ is

κ =
cpµ

Pr
.

The numbers presented in table 5.5 indicate that the implementation of the pseudo-
incompressible model does not work well in this benchmark case. The value of the
Nusselt number is closer to the reference value if the heating in the continuity equation
is ignored. This may be explained by observing that this change makes the mathemat-
ical model closer to the Boussinesq model.
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Run Hot wall Nu Cold wall Nu

Compressible reference [20] 8.85978 8.85978

Boussinesq reference [21] 8.825 8.825

Pseudo-incompressible 9.24 9.24

Pseudo-incompressible H = 0 * 9.08 9.08

Table 5.5: Average Nusselt numbers in different locations for the different runs. *H =
0 only in the continuity equation. There would be no motion if it was set to zero in the
heat equation.

Direction Length

X 8000 m

Y 1000 m

Z 8000 m

Table 5.6: Simulation domain dimensions for the St. Andrew’s Cross case.

5.2 2-d St. Andrew’s Cross

We want to study internal gravity waves in a stratified fluid. We do this by introducing
a disturbance in a hydrostatically stratified fluid. The disturbance is oscillating and this
oscillation causes internal waves. Depending on the frequency of oscillation compared
to the Brunt-Väisälä (buoyancy) frequency, wave patterns may arise. For the right
frequencies, we expext to observe the density disturbance form beams. This X-shaped
structure is referred to as St. Andrew’s Cross. St. Andrew was one of the Apostles and
was crucified on an X-shaped cross, thus the name.

5.2.1 Setup

The simulation domain is a prism as shown in figure 5.2, even though the physical
problem is 2-d. All the variables are uniform in the y-direction. The physical parame-
ters are shown in tables 5.6 and 5.7. The boundary conditions are listed in table 5.8.

The stratification is defined using the background functions ρ̄, π̄ and θ̄. The density
is set to decrease exponentially with height, and the Exner function is set so that it
satisfies the third momentum equation when the velocities are zero. The potential
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Symbol Meaning Value

cp Specific heat 1003.0 J/(kg K)

µ Fluid viscosity 1.8e-5 Pa s

ρ0 Density at bottom 1.168 kg/m3

g Gravity constant 9.81 m/s2

T̄ Background temperature 300 K

N Buoyancy frequency 0.0179 s−1

γ Constant density/volume heat capacity ratio 1.4

Table 5.7: Overview of physical parameters for the St. Andrew’s Cross case.

Volume face Boundary Condition Type

A Dirichlet

B Dirichlet

C Neumann

D Neumann

E Dirichlet

F Neumann

Table 5.8: Overview of boundary conditions for the St. Andrew’s Cross case.
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temperature is chosen so that the background temperature is constant. This gives

ρ̄(z) = ρ0 exp(−
(z− z0)λN2

g(λ− 1)
),

π̄(z) = exp(−
gz

cpT̄
),

and

θ̄ =
T̄

π̄
.

The disturbance is modelled with a periodic forcing term F(~x, t) on the right hand
side of the vertical momentum equation.

F(~x, t) = 0.01 cos(ωt)e−r/σ2
.

Here, σ is 33 m and r is the distance to the xz-center of the volume, i.e. ignoring the
distance along the y-axis. ω is the angular speed of the disturbance. We can vary ω to
achieve different angles between the vertical axis and the wave beams.

5.2.2 Results

See figure 5.3 to see the temporal evolution of the St. Andrew’s Cross. It was stated
earlier that the buoyancy frequency is 0.179 in this setup. This is a simplification, since
the buoyancy frequency is really vertically varying according to

N(z) =

√

g

θ

dθ

dz

in the current setup. With a spatially constant N, we should expect to see beams form
only at one specific angle to the vertical. In our case, however, linear theory for internal
waves predicts multiple beams, with ever more beams as time increases. In fact, the
angle between neighbouring wave crests that are around an angle α to the vertical
should be

2π

Nt sin(α)
.

This means that the wave crests closest to the vertical will be the widest, and that the
width of each beam is decreasing with time. The beams move toward the horizontal
line, i.e beams above the source move downwards and wave beams below the source
move upwards. The energy propagates upwards above the disturbance source and
downwards below the source. This means very little energy should be present on the
horizontal line that passes through the source. See e.g. Lighthill [22] for a derivation of
the above theory on internal waves and some photographs of laboratory experiments
that exhibit the same patterns as figure 5.3.

In short, we see that the behaviour of the experiment agrees with the theory, both
with regards to the temporal and spatial evolution of the beams. The computed solu-
tion gets somewhat polluted after t=1000s, because of reflections from the boundaries.
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Figure 5.3: Density perturbation plotted at t = 500, 1000, 1500 and 2000.
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Quantity Scale Value

Length Density scale height H 8777 m

Speed cs 347 m/s

Time H/cs 25.3 s

Table 5.9: The scales that were used in the case of the breaking gravity wave.

Direction Length

X 4H

Y 2H

Z 6H

Table 5.10: Volume dimensions in the case of the breaking gravity wave.

5.3 The Breaking of a Gravity Wave in 2-d/3-d

Interesting dynamics arise when internal gravity waves break. This can happen for
instance when the z-component of the potential temperature gradient gets negative.
An oscillating disturbance is introduced in a tall hydrostatically stratified atmosphere.
This oscillation excites internal waves. Waves propagating downwards are damped
and are of little interest. The waves that propagate upwards increase in amplitude.
A critical layer with horizontal speed that equals the phase-speed of the disturbance
is placed near the top of the simulation domain. The wave energy cannot sufficiently
pass through the critical layer. This causes the gravity waves to break slightly below
the critical layer.

5.3.1 Setup

The simulation domain is a prism as shown in figure 5.2. The physical parameters are
shown in tables 5.10 and 5.11. They are scaled so that they match the conditions in the
simulation by Andreassen et. al. [23] closely. The scales that are used are given in table
5.9. The boundary conditions are listed in table 5.12.

The stratification is defined using the background functions ρ̄, π̄ and θ̄. The density
is set to decrease exponentially with height, and the Exner function is set so that it
satisfies the third momentum equation when the velocities are zero. The potential
temperature is chosen so that the background temperature is constant. This gives

ρ̄(z) = ρ0e−z.
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Symbol Meaning Value

cp Specific heat 1003.0 J/(kg K)

µ Fluid viscosity 1.0e-6 Pa s

ρ0 Density at bottom 1.168 kg/m3

g Gravity constant 9.81 m/s2

T̄ Background temperature 300 K

γ Constant density/volume heat capacity ratio 1.4

Table 5.11: Overview of physical parameters in the case of the breaking gravity wave.

Volume face Boundary Condition Type

A Periodic

B Periodic

C Periodic

D Periodic

E Dirichlet

F Neumann

Table 5.12: Overview of boundary conditions in the case of the breaking gravity wave.
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π̄ = exp(−
gzH

cpT̄
),

and

θ̄ =
T̄

π̄
.

The disturbance is modelled with a periodic forcing term F(~x, t) on the right hand side
of the vertical momentum equation:

F(~x, t) = 0.125ξ(t) exp(−(z− z f orce)
2/σ2) sin(ωt− k0x)

Here, σ is 0.2, z f orce is the height of maximum forcing and is set to 3, the angular speed

ω is 0.314 s−1, and the wave number k0 is 1.57. ξ(t) constrains the disturbance to a
specific time interval:

ξ(t) =



















√

t/10, 0 ≤ t ≤ 10,

1, 10 < t ≤ 50,
√

(60− t)/10, 50 < t ≤ 60,

0, 60 < t.

The wave number k0 is set so that the phase speed is equal to the horizontal speed at
z = 5H. The initial horizontal speed is set to

u0 =

{

0, 0 ≤ z ≤ 4,

0.2(1 + cos((3− x/2.0)π)), 4 < z ≤ 6.

The upper boundary causes some headaches, since it is an open boundary with no
periodic properties. The Neumann boundary condition gave some trouble, because
some flow structures inevitably made it past the critical layer and interacted with the
boundary. Non-physical reflections would then interfere with the region of interest
after some time. To combat this, the simulation box was made taller than necessary
and an extra damping layer was introduced. This damping was accomplished by in-
creasing the viscosity, thus smoothing small structures. Some amount of trial and error
was required in order to find a sufficiently small, i.e. does not affect the overall flow,
viscosity that provided enough damping:

µ =











2 ∗ 10−4(0.5− z) + 2 ∗ 10−6z, 0 ≤ z ≤ 0.5,

10−6, 0.5 < z ≤ 5.5,

2 ∗ 10−4(z− 5.5) + 2 ∗ 10−6(6− z), 5.5 < z ≤ 6.

In order to induce 3-d flow, weak random noise was added to the potential temper-
ature field at t = 40.

5.3.2 Results

In order to visualise the vortices present in the solution, it was necessary to compute a
quantity known as the vorticity or the curl of the velocity field. The vorticity is a vector
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Figure 5.4: This figure shows the vertical forcing in the middle of the volume, and the
horizontal velocity initial condition in the upper model atmosphere.

Figure 5.5: The Exner function perturbation at t = 40. Waves propagate up and down
as in the St. Andrews case. The area between z = 4.5 and z = 5 is where the waves will
eventually break.
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Figure 5.6: Potential temperature in the 2-d case plotted at t = 80, 85, 90. In this case,
no noise was added, so the value of all variables are uniform in the y-direction, which
is perpendicular to the paper plane.
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Figure 5.7: Potential temperature isosurface (green) and x-vorticity (red and blue tubes)
plotted in the case of random noise added. The lower scene is rendered with a clipping
plane, so it is easier to see the vortex tubes. The screenshot is from t=77.5
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quantity that indicates rotational movement:

∇× ~u =

(

∂w

∂y
−

∂v

∂z

)

~i +

(

∂u

∂z
−

∂w

∂x

)

~j +

(

∂v

∂x
−

∂u

∂y

)

~k

Figure 5.6 shows that a convective instability arises from the gravity wave near the
critical layer. The instability causes the flow structures to rapidly cascade into smaller
structures. It is interesting to note that the 3-d case is qualitatively different from the
2-d case. In 2-d, there are vortices oriented along the y-axis only. In 3-d, a number of
counter-rotating vortex pairs oriented along the x-axis appear as the wave breaks. Fig-
ure 5.7 shows these vortices as blue and red tubes. The perturbations associated with
these vortices are several orders of magnitude larger than the noise that was added.
This indicates that the vortices oriented along the X-direction are indeed the favoured
way of breaking for such waves. This result is in agreement with the results of An-
dreassen et. al. [23], even though they obtained their results with a different model (the
Euler equations), and a different numerical framework (the spectral viscosity method).
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Chapter 6

Conclusions

A spectral element method for the pseudo-incompressible model by Durran has been
implemented and run against several test cases.

The results from the thermal convection benchmark case in section 5.1 are not as
good as we wished. The Nusselt number is off by 4 percent, which is worse than the
Boussinesq model. There is a small concern that this may indicate a programming er-
ror, but it can just as well indicate that the pseudo-incompressible model is unsuitable
for this problem. Remember that we are applying a mathematical model that is tay-
lored for atmosphere calculations onto a tiny box with huge temperature differences.
The reference numbers are for a fully compressible solver, and we cannot expect to
match it exactly with a pseudo-incompressible model. It is disappointing nevertheless
that it was off by more than the Boussinesq model.

The St. Andrew’s Cross case is more relevant as a sanity check for the method,
both because it is a stratified case and it concerns internal gravity waves. This case
shows exactly the behaviour expected. Thus, we have re-established some faith in the
properties of the solver, even though the St. Andrew’s Cross is a linear case.

The third case that the method has been applied to, is the breaking of a gravity
wave. This is a non-linear case which concerns the transition from laminar to turbulent
flow. In this case, the results are in good agreement with cited results obtained through
different methods.

In all three cases, the results have been in qualitative agreement with either cited
reference material or analytical results. Ideally, the accuracy of the code should also be
assessed with a non-linear tall atmosphere reference case. Such reference data was not
found. The lack of hard evidence to ’prove’ that we achieve the high accuracy expected
from a spectral element method is perhaps the greatest weakness of this work.

There is a lot of room for improvement in the current implementation. Perhaps the
most pressing, are the pressure preconditioner and the parallell performance. The code
scales well up to around 10 CPUs, but after that, the overhead starts to be a problem.
This is unacceptable in a 1000 CPU environment. The Exner problem preconditioner
does not perform good enough. Convergence is slow, so most of the overall time spent
to solve a problem is spent solving for the Exner function.
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